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ABSTRACT

We have undertaken the task of comparing two-dimensional discrete-
ordinates neutron transport computer codes to solve reactor criticality
problems. Our fundamental interest is in determining which code requires
the minimum Central Processing Unit (CPU) time for a given numerical model
of a reasonably realistic fast reactor core and peripherals. The computer
codes considered are the most advanced available and, in three cases, are
not officially released. OQur conclusion, based on the study of four fast
reactor core models, is that for this class of problems the diffusion syn-
thetic accelerated version of TWOTRAN, labeled TWOTRAN-DA, is superior to
the other codes in terms of CPU requirements.

Work performed under the auspices of the U. 5. Department of Energy.



A TIMING COMPARISON OF TWO-DIMENSIONAL
DISCRETE~-ORDINATES CODES FOR CRITICALITY CALCULATIONS

INTRODUCTION

With the increased interest in heterogeneous cores in the fast reactor com-
munity has come increased use of two-dimensional discrete-ordinates computer codes
for criticality calculations. Since there are several such codes more or less
available to reactor designerc, we have undertaken the task of comparing them in
terms of computer Central Processing Unit (CPU) time to aid the user in the se-
lection of the most efficient computational tool. We have considered four codes
commonly used at variouslU. S. national laboratories. The first is a version of
the diffusion code DIF3D  that has a discrete-ordinates module. This code, here-

after labeled DIF3D-T, is an in-house code developed and used at Argonne National
Laboratory (ANL). The second candidate code is DOT-IV,2 a soon-to-be released

code developed at Oak Ridge National Laboratory (ORNL). TWOTRAN-II3 is a well-
established production code developed at Los Alamos Scientific Laboratory (LASL)

while TWOTRAN-DAA is a newly developed version of that code due for selected
release in a preliminary version toward the end of 1979.

THE CANDIDATE CODES

ITERATION STRATEGY

All four candidate codes iteratively solve the multigroup discrete-ordinates
equations expressed, for the case of cylindrical (r-z) geometry, as
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where we have assumed that scattering is isotropic for simplicity. The notation

used in Eq. (1) is standard5 with m denoting the angular directicnal subscript, g
the energy group subscript and £, the outer iteration index. Note that the scalar
flux, ¢g’ is related to the angular flux, wmg’ by the familiar quadrature formula

M
¢g(r,2) = :E: wm¢mg(r,2) . (2)

m=1

The candidate computer codes all use the power iteratiun method6 in perform-
ing the indicated outer iteration cycles in Eq. (1) but they have significantly
different approaches to accelerate the process. The DIF3D-T code accelerates
the outer iteration process using the same Chebyshev method used in DIF3D.6 The
DOT-1V code employs a variation of the spatial rebalance method7 whereby on a

spatial mesh (that may be more coarse than the problem mesh) neutron conserva-
tion is periodically imposed as the iterations proceed. TWOTRAN-II uses a more

traditional version of spatial rebalance.3 Finally, TWOTRAN-DA uses the newly
developed diffusion-synthetic acceleration (DSA) method.b The DSA approach has

been shown to be equivalent to an angular and spatial rebalance method.8 There
are no user input paramelers to control the outer iterations for DIF3D-T and
TWOTRAN-DA. On the other hand, the DOT-IV and TWCTRAN-I1 codes allow the user

to influence the iteration process by specifying the rebalance mesh as well as

the maximum number of inner iterations (discussed below) for each outer iteration.

To display the inner iteration we drop the outer iteration index and define
a group source, Qg' Equation (1) is then written as
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with n the inner iteration index. This process is accelerated in DOT-IV and
TWOTRAN-1] using spatial rebalance, and in TWOTRAN-DA using DSA. In an anal-
ogous approach to that used in DIF3D, the DIF3D-T algorithms calculate and set
the number of inner iterations used for each energy group. The number of "in-
ners" is fixed for each outer iteration but may differ with each group. Thus,
DIF3D-T has no inner iteration acceleration method in the sense of the approaches
used by the other three codes.



DIFFERENCING SCHEME

In the numerical solution of Eq. (3) for a given inner itevation one
superimposes a spatial grid on the physical problem such that all material
properties are spatial constants within a spatial cell. Letting j denotc
the axial (z) spatial index and i the radial (r) index, and integrating Lq.
(3) over a spatial cell yields the balance equation
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where, again, notation is standard™ and we have dropped the energy group and
inner iteration indices. For a given quadrature direction, (pm, nm) and

specified boundary conditions, Eq. (4) is used to sweep through the spatial
mesh. For a given phase~space cell, (i,j,m), all geometric and angular co-
efficients (a, P, N, A, B, V) are known as well as cross section and source
data. Additionally, the previous phase-space ce1l calculation provides the
cell boundary angular fluxes: wm-%ij’ -k’ and ¢
example of pm >0, N >0. There are four unknown angular fluxes in Eq. (4)
and, therefore three more relationships are needed to complete the calculation
for the (ijm)scell. All four candicdate codes use the diamond difference
relationships

.. , 1n the case, for
mij->
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There are somewhat subtle differences in the application of Egqs. (5) in
each candidate transport code. Equations (4) and (5) do not assure positive

cell exiting fluxes wm+%ij’ wmi+5j’ and wmij+5’ in violation of problem physics,

For cases where negative exiting fluxes are calculated, algorithms in TWOTRAN=II
and TWOTRAN-DA se¢t the offending fluxes to zero. This set-to-zero negative-{lux

fixup3 then involves recalculation of the other flux values to insure particle
conservation. For cases of negative fluxes, DOT-IV employs a step-difference
relationship to replace the appropriate one of Eq. (5). For example, Ey. (54)
is replaced by

.. =Y

mi j mitkj

insuring a positive flux. It should also be noted that DOT-1V includes a user
requested option to use, in lieu of Eqs. (5), more complicated weighted diamond



relationships that guarantee positive exiting fluxes. The DIF3D-T code does
not include a fixup but simply uses the calculated negative flux.

In addition to the negative-flux fixup, the differencing schemes in the
codes are dissimilar in another way. The normally employed angular quadrature
schemes are defined such that several quadrature points share a common value
of N. On each n level a problem exists as to how to solve Eq. (4) for the
quadrature point corresponding to the smallest value of p. Taking, for ex-
ample, the case of m = 1, the w%ii needed in Eq. (4) is not known. For this

case TWOTRAN-11, TWOTRAN-DA, and DIF3DT use the step relationship

=W
llJ!2ij ‘1ij (6)

On the other hand, DOT-IV uses the so-called starting direction, solving

the transport equaticn with p = -1 and n equal to each of its distinct values.
For these cases, the o's of Eq. (4) are zero. For m = 1 for example, one
solves the equation
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in conjunction with Egqs. (5b) and (5c). The resulting ¢, .., are then used in

Eq. (4) and Eqs. (5). As discussed in the numerical resd ¢s section, the
different treatments of the angular variables can result in slight variations
in the eigenvalues.

A third variation to the solution processes used in the three codes is
unique to DIF3DT. In lieu of the conventional sweeping of all cell: for each
direction described above, DIF3D-T solves Eqs. (4) and (5) using the unique

up-down strategy of TPT.9

Table 1 provides a recapitulation of the above discussed features of the
candid: te codes.

CANDIDATE CODE COMPARISON STRATEGY
GENERAL

It is certainly not a straightforward task to perform computer running
time comparisons of large computer codes. The answer to the question '"which
code is fastest?" unfortunately may depend upon the strategy used {for com-
parison. Our overall strategy has four key features: 1) use one computer
and one operating system, 2) measure only CPU time ignoring input/output (I/0)
efficiency, 3) pick specific physical problems with specific mesh arrangements
that are typical of those selected by fast reactor designers, 4) use the same
differencing methods and convergence criteria, as much as possible, for each
code. Thus, what is being compared is the effectiveless of the iteration
acceleration methods as implemented in each code.



COMPUTER AND OPERATING SYSTEM

Our code testing was performed using the CDC-7600 computers at LASL op-
erating under the LTSS-FTIN (OPT=2) operating system. Although LTSS is time
sharing and, therefore, susceptibie to considerable movement of jobs in and out
of large core memory (LCM) and small core memory (SCM) our reported running
times minimize this effect as much as possible. Such minimization was assured
through submission of all jobs at nights or on weekends when the computers at
LASL operate in more of a batch-like mode with minimal job movement.

TIME MEASUREMENTS

The CDC-7600 has three levels of bulk storage: SCM, central or small core
memory; LCM, fast access large core memory; and disk, slow access peripheral
memory. The test problems solved in the following section were not large enough
to require significant use of disk memory and thus I/0 was not an important
factor. To time the solution of very large prublems, one must consider both CPU
and 1/0 times and thus the overall times will be a function of the efficiency of
the code's I/0 routines. Since three of the candidate codes have not been
released and at least two do not have completed, optimized I/0 packages, we have
elected to consider only CPU times. Thus the study of the efficiercy of I1/0
strategies is beyond the scope of this work but we do not wish to minimize its
importance for large problems.

PROBLEMS AND METHODS

We have selected four fast reactor test problems that include most of the
physical arrangements likely to be encountered by fast reactor designers. We
Lave selected a reasonable quadrature order (S, in all cases), group structure
and spatial mesh for each model problem. To insure insofar as is possible that
the comparisons are, for the same computational effort, we have used the same
spatial differencing scheme (diamond differencing with negative flux fixup) for
each code except for DIF3DT which, as was previously mentioned, does not allow
negacive flux fixup.

It should be pointed out that several features of DOT-IV were not fully
exploited by this exercise. That code allows the user to specify a variable
mesh where, essentially, the number of radial invervals can vary with the axial
interval, Also, the weighted-diamond difference scheme can be selected which
could in principle, allow acceptable accuracy for a coarser grid with some
penalty of increased CPU time per cell calculation. DOT-IV allows the angular
quadrature order to vary with spatial position and the user to specify diffusion
theory for some groups and transport theory for others. With all these fea-
tures, then, the very sophisticated DOT-IV user could in principle obtain an
accurate solution to the test problem with fewer phase-space cells and, perhaps,
less CPU time. Due to the incredible code comparison complications associated
with pursuing these DOT-1V approaches, we have kept all mesh and nethods for all
codes as similar as possible.

We have also used, whenever possible, the same iteration convergence cri-
teria for each candidate code. A separate convergence criterion is input for
the eigenvalue, the fission source for each spatial cell, and the scalar flux
for each spatial cell and for each energy group. Thus, we assume an interest



not only in k but also in the flux distribution. This required that

eff’
slight changes be made to TWOTRAN-II; namely, a fission-source convergence
check was added and the check on rebalance factor convergence was disabled.
Also the check on cell scalar flux convergence was made to be identical to
that used in DOT-1V.

Unlike the other candidate codes DIF3D-T does not use a check on the cell
scalar flux to end inner iterations since the number of such iterations is
fixed by the code. We did, however, verify that the DIF3D-T scalar fluxes did
not differ substantially from the converged TWOTRAN-II values through the use
of an auxiliary pointwise-flux comparison code.

NUMERICAL RESULTS
ZPPR-7A PRORLEM

Our first test problem was a three-group rectangular geomety model of the
ZPPR-7A critical assembly mockup of a parfait core depicted in Fig. 1. For our
tirst series of calculations we used the spatial mesh and rebalance mesh indi-
cated in this figure. Table 2 depicts the CPU times for the ZPPR-7A calculations.
For ease of discussion we have depicted the tabulated results as sets of calcu-
lations. The first set of four results indicates that TWOTRAN-DA is significantly
superior to the other codes. The values labeled "Maximum Inners/Outer" are in-
put by the user of TWOTRAN-II and DOT-IV but are automatically supplied for
DIF3D-T and TWOTKAN-DA. The running times obtained using the former two codes
are sensitive to this number and the times reported are the best obtained after
some experimentation. We will return to this point while discussing the other
test problems.

The next set of two results in Table 2 depict the effect of changing the
convergence criteria. It should be ncted that although the TWOTRAN-II eigen-
value is esseitially unchanged, the DOT result is substantially different and,
in fact, the DOT keff's disagree in the third digit. These results indicate

that, at least with DOT-IV, the user must be cautious in choosing the popular
procedure of specifying a tighter convergence criterion for the eigenvalue
than for the spatial cell quantities and assuming that the former is truly
known to a greater precision than the latter.

The next set of results depict the significant CPU time savings with
TWOTRAN-(1 and DIF3D-T when a diffusion theory flux is used as a guess to
initiate the iteration procedure. Such a flux guess will not substantially
affe.t TWOTRAN-DA run times since the iteration process begins with a dif-

fusion calculation. DOT-IV calculations performed at ORNI.10 indicate that
similar improvements in run times with a diffusion guess are obtained with
that code. The last set of results in Table 2 indicate the effect of using
tiguter convergence crriteria on CPU time.

Table 3 depicts results for the same ZPPR-7A problem but with twice the
number of equal radial (x) and axial (y) intervals such that the problem mesh
was 58 x 56. The original 29 x 28 mesh was retained as the rebalance mesh.
In this table, as well as those to fullow, one convergence criterion value
was used for the eigenvalue, fissicu source and scalar flux. The first set



of four results again depicts the superiority of TWOTRAN-DA. In the TWOTRAN-
I1I run, the last few outer iterations required very few inner iterations per
group. Apparently, the DIF3D-T calculated requirement that exactly 30 inner
iterations be performed for each outer iteration is inefficient for this
problem. Keep in mind, however, that with a bad choice of "Maximum Inners/
Outer" the DOT-IV and TWOTRAN-II CPU times can increase substantially.

The DOT-1IV code was significantly slower than TWOTRAN-II for this mesh.
The convergence patterns of these codes were vastly different. Of the 157
total TWOTRAN-II inner iterations, 105 of them occurred in the first two
outer iterations due to the 60 allowed inner iterations per outer iteration.
When this latter number was input to DOT-IV, the CPU time increased to 7.2
minutes. Clearly, the rebalance strategies of DOT-IV and TWOTRAN-II are
quite different and can give quite different performances. It should further
be noted that the rebalance mesh must be as fine as possible (within storage
limitations) to achieve reasonable CPU times. For a very coarse rebalance
mesh, TWOTRAN-II takes considerably longer than DIF3D-T to run.

In the single TWOTRAN-II run comprising the second set of Table 3 results
we again see that a diffusion flux guess can significantly reduce transport
CPU times. The last set of results in Table 3 are for tighter convergence
criteria.

LCCBR MODEL

The second problem was a Large Core Commercial Breeder Reactor (LCCBR)
model also considered by the Large Core Code Evaluation Working Group of the

U. S. Department of Energy, Division of Reactor Research and Technology.11
The physical problem, depicted in Fig. 2, was solved with six energy groups,
with S8, quadrature, and in cylindrical geometry. The rebalance mesh, not
depicted in Fig. 2, was 34 x 18 as compared to the 67 x 34 fine mesh. Thus
there were approximately four fine mesh cells in each coarse mesh ceill.

Table 4 depicts the results for the LCCBR problem where all convergence

criteria were set to 10-4. The first set of fcur calculations, again demon-

stratc the excellent run times obtained with TWOTRAN-DA. 1t should be noted

in all fairness to DOT-IV that use of the starting directions in lieu of step
starting (see Table 1) results in an increase in calculational effort of 33%

with, in principle, some degree of increase in accuracy of the solution.

The next set of two results demonstrate the effect of changing the value
of the maximum allowed inner iterations per outer iteration. For this problem,
TWOTRAN-II is somewhat insensitive to this parameter while DOT-IV run times
depend strongly on it. The last set of calculations demonstrate the improvement
obtained with a8 diffusion flux guess.

FTR MODEL

The third test problem was a cylindric:zl geometry model of the Fast Teo*

Reactor (FTR). A four group approximation and 10-4 convergence criteria were
used. The rebalance mesh was 16 x 34 as compared to the 31 x 68 fine mesh.
Table 5 provides the numerical results for this problem where the pattern is
similar to that of the previous problem. Again keep in mind the additional



computational effort of DOT-IV due to the use of starting directions. Note

that the DOT-1IV ke is significantly less than those calculated by the other
codes. This behavior was pursued in conjunction with the last problem discussed
below.

RECRITICALITY MODEL

The last test problem is depicted in Fig. 4. The problem models 2 reactor
core configuration during the latter stages of a severe hypothetical core melt-

down. Four energy groups, 10-4 convergence criteria, and cylindrical geometry
were used. The rebalance mesh was 16 x 22.

Table 6 provides the CPU time compariszons for this problem where again,
TWOTRAN-DA performs well. The DOT-1V keff result is not consistent with the

other transport calculations when one considers the 10-4 convergence criteria.

We undertook a cursory evaluation of this discrepancy in the following way. The
effect of the starting direction in DOT as compared to step starting in the other
codes was removed by simply assuming rectangular in lieu of cylindrical geometry.
The angular terms of Eq. (4) (terms in o) do not appear in the rectangular trans-
port equation. Now, of course, the problem has changed and, thus, the eigenvalues

are expected to change. The DOT-IV and TVOTRAN-II keff's became 1.1893 and 1.1897,

respectively. We next note that the two codes use different negative-flux fixup
schemes. Accordingly, negative-flux fixup in both codes was disabled yielding
eigenvalues of 1.1894 and 1.1896, respectively. Finally, rebalance acceleration
was made inoperative in both codes resulting in unaccelerated calculations. After
ten minutes cf CPU time neither code had converged the problem in the spatial cell
scalar flux values. However, the iteration pattern indicates that both codes are

converging to a keff of 1.1897. Accordingly, we surmise that the eigenvalue

discrepancies of Tables 5 and 6 are due to the slightly different solution and
acceleration algorithms used in the candidate codes.

CONCLUSIONS

We have studied four fast reactor model problems to determine the CPU per-
formance of four two-dimensional discrete-ordinates neutron transport codes.
Several important trends were evident from this exercise. First, we found that
TWOTRAN-I1 and DOT-IV CPU times are sensitive to the rebalance mesh and the
maximum allowed inner iterations per outer iteration. Our experience indicates
that, within storage limitations, the rebalance mesh should be made reasonably
fine. The TWOTRAN-DA and DIF3D-T codes, on the other hand, do not include input
p rameters that appreciably affect the CPU performance. Thus, the user does not
have to be an expert to effectively use the codes. The TWOTRAN-DA code is at
least twice as fast as any of the candidate codes, even when a diffusion flux
guess is used to initiate the iteration process. With an unfortunate selection
of DOT-1V and TWOTRAN-II input parameters, this factor can be much greataer than
two.
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Code

DIF3D-T

DOT-1IV

TWOTRAN-11

TWOTRAN-DA

Table 1.

Comparison of Key Features
of Candidate Codes

Negative
Flux

Fixup

None

Step-Fixup
(Optionally use
Weighted Scheme)

Set-to-Zero
Fixup

Set-to-Zero
Fixup

Angular
Starting
Procedure

Step Start

Starting
Direction

Step Start

Step Start

10

Iteration User Space-Angle
Acceleration Control of Mesh

Scheme Iterations Sweep
Chebyshev None TPT

(Fixed Inners/

outer/group)

Rebalance Significant Standard
Rebaliance Significant Standard
Diffusion Noue Standard
Synthetic

Acceleration



Table 2. Coarsc Mesh ZPPR-7A Froblem Kesults®
__Using Various Transport Codes,

Fission
Source
f.igenvalue and Flux Total Total
Computer Convergence Convergence Flux Inner Max imum CPU Time
Code  Criterion  Criterjon Guess,  “eff Iterations  Inners/Outer ()
DT 3D-T T T Flat  0.9792% 190 30 1.3
- -4 -4 . o ,
DoT-1V 10 10 Flat 0.97911 212 15 1.7
-/ -
TWOTRAN-1T 16" 10 4 Flat 0.97922 314 60 1.5
TWOTRAN-DA  10”% 107% Flat  0.97923 60 b 0
TWOTKAN-11 107 ° 10”1 Flat  0.9792] 160 60 1.1
DOT-1V 107 1073 Flat  €.97660 133 30 0%
. -4 -4 . - . «
DIF3D-T 10 10 Ditfu- 0.97923 180 30 0.7
sion
-4 -4 D . . (
TWOTRAN-I1 10 10 Diffu= (.97924 200 60 0.9
sion
- -
TWOTRAN-11 197 107> Flat  0.97923 437 60 2.2
TWOTRAN-DA 10”° 107> Flat  0.97923 68 b 0.4

2The diffusion code DIF3D gives an eigenvalue of 0.97826 in approximately 0.1 min.

bTWOTRAN-DA specifies one inner iteration/group/outer iteration until fission

source and eigenvalue convergence. Then as many inneir terations as are nceded
are a:lowed to obtain spatial cell scalar flux convergence.

CCPU times include DIF3D run time to obtain diffusion flux.
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Computer
Code

DIF3D-T
DOT-1V
TWOTRAN-11

TWOTRAN-DA

TWOTRAN-1 ]

TWNTRAN-11

TWOTRAN-DA

Table 3.
Convergence Flux
Criterion  Guess

10-4 Flat
107" Flat
1074 Fiat
]0-4 Flat
10-4 Ditfu-
sion
10 ° Flat
1072 Flat

?The diffusion code DIF3D gives

eff

0.98004
0.97990
( .98001

0.98004

0.98000

0.98004

0.98004

Total
'nner
Iterations

390

204

157

41

93

243

47

Finc Mesh ZPPR-7A Problem Results®
__Using Various Tiausport Codes

Total
Outer
Iterations
13
16

14

Max imum

Inners/

Outer
30
15

60

60

Total

CFLU Time

(minj
4.5

5.9

ro
N

an eigenvalue of 0.9762]1 in approximately 0.3 min.

b . . . , . , . .,
TWOTRAN-DA specifies one inner iteration/group/outec iteration unti) fission source

and eigeuvalue convergence.
allowed to obtain spatial cell scalar flux convergence.

CSam(.- as Table 2.

Then as many inner iterations as are needed are
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Table 4. LCCBR Problem Results
_Using Various Transport Codes”

Total Max imum Total

Computer Flux K Inner Outer luners/ CPU Time
Code Guess _eff Iterations Iterations Outer ‘min)
DIF3D-T Flat 1.00821 765 17 45 8.8
DOT-1V Flat 1.0u806 473 19 10 7.5
TWOTRAN-11 Flat 1.00821 499 22 120 4.6
TWOTRAN-DA Flat 1.00820 52 7 b 1.0
TWOTRAN-I1[ Flat 1.00821 425 23 60 4.1
DOT-1V Flat 1.00808 709 19 60 11.2
DIF3D-T Diffu- 1.00819 540 12 45 7.0

sion
TWOTRAN-11 Diffu- 1.00821 257 22 60 2.8°

sion

3The diffsuion code DIF3D gives an eigenvalue of 1.00607 in approximately 0.2 min.
b(Same as Table 3.)

C(Same as Table 3.)
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Table 5. FTR Problem Results a
Using Various Transport Codes”

Total Maximum Total

Computer Flux K Inner Outer Inners/ CPU Time
Code Guess eff Iterations Iterations Outers (min) _
DIF3D-T Flat 0.99462 495 11 45 5.6
DOT-1V Flat 0.99404 222 i3 20 3.5
TWOTRAN-[]1 Flat 0.99455 223 10 40 2.0
TWOTRAN-DA Flat 0.99461] 35 5 b 0.6
DIF3D-T Diffu-  0.95458 495 1 45 5.6°

sion
TWOTRAN=-11 Diffu- 0.99460 96 4 40 ].OC

sion

The diffusion code DIF3D gives a ke of 0.99087 in approximately 0.1 min CPU time.

it
b(Same as Table 4.)

C(Same as Table 4.)
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Table 6. Recriticality Problem Results
~ Using Various Transport Codes”

Total Maximum Totral
Computer Flux k Inner Outer Inners/ CPU Time
Code Guess el Iterations [Iterations  Outer (min)
DIF3D-T Flat 1.06714 360 9 40 3.1
1
DOT-1V Flat 1.06644 310 18 20 3.1
TWOTRAN-11 Flat 1.06700 279 14 40 1.7
TWOTRAN=DA Flat 1.06708 18 9 b 0.5
DIF3D-T Diffu- 1.06714 360 9 40 3.2¢
sion
TWOTRAN-T1  Diffu-  1.0670] 150 9 40 1.1°
sion

8The diffusion code DIF3D gives a kofl of 1.64442 in approximately 0.1 min CPU time.
b(Samc as Table 5.)

c(Same as Table 5.)
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